Exponents, Polynomials, and Polynomial Functions

Product rule: $a^{m} \cdot a^{n} = a^{m+n}$ Zero exponent: $a^{\circ} = 1$, $a \neq 0$ Quotient rule: $a^{m}/a^{n} = a^{m-n}$ Negative exponent: $a^{-n} = 1/a^{n}$ A positive number is written in **scientific notation** if it is written as the product of a number *a*, where 1 $\leq a \leq 10$, and an integer power of 10:

Power rules:

a x 10^r.

(a^m)ⁿ = a^{m•n}(ab)^m = a^mb^m(a/b)^m = a^m/b^m

A polynomial is a finite sum of terms in which all variables have exponents raised to nonnegative integer powers and no variables appear in the denominator.

A function P is a **polynomial function** if P(x) is a polynomial.

Factoring

To factor $ax^2 + bx + c$:

- 1. Write all pairs of factors of ax^2
- 2. Write all pairs of factors of c.
- 3. Try combinations of these factors until the middle term bx is found.

Perfect square trinomial:

 $a^{2} + 2ab + b^{2} = (a + b)^{2}$

 $a^2 - 2ab + b^2 = (a - b)^2$

Difference of two squares:

 $a^2 - b^2 = (a + b)(a - b)$

Sum and difference of two cubes:

 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

To factor a polynomial:

- 1. Factor out the GCF.
- 2. If the polynomial is a binomial, see if it is a *difference* of two squares or a sum or *difference* of two cubes. If it is a

trinomial, see if it is a perfect square trinomial. If not, try other factoring methods. If it is a polynomial with 4 or more terms, try factoring by grouping.

3. See if any factors can be factored further.

To solve polynomial equations by factoring:

- 1. Write the equation so that one side is 0.
- 2. Factor the polynomial completely.
- 3. Set each factor equal to 0.
- 4. Solve the resulting equations.
- 5. Check each solution.

A quadratic function is a function that can be written in the form

 $f/(x) = ax^2 + bx + c; a \neq 0$

The graph of this quadratic function is a parabola with vertex

$$\left(\frac{b}{2a}\right), f\left(\frac{-b}{2a}\right)$$