Finding Limits Algebraically

A limit is the value that a function approaches as the input approaches a certain value. Limits are used to define continuity, derivatives, and integrals.

There are different approaches to finding limits.

Examples:

In this example, you can factor the numerator and denominator, reduce, and then substitute in the 5 for x to get your limit.

$$
\lim _{x \rightarrow 5} \frac{x^{2}+3 x-40}{x^{2}-25}=\frac{(x+8)(x-5)}{(x-5)(x+5)}=\frac{x+8}{x+5}=\frac{5+8}{5+5}=\frac{13}{10}
$$

As "x approaches 5 ," the limit is $\frac{13}{10}$.

In the following example, you will need to rationalize the numerator in order to find the limit.

$$
\lim _{x \rightarrow 81} \frac{\sqrt{x}-9}{x-81}\left(\frac{\sqrt{x}+9}{\sqrt{x}+9}\right)=\frac{x-81}{(x-81)(\sqrt{x}+9)}=\frac{1}{\sqrt{x}+9}=\frac{1}{18}
$$

As "x approaches 81," the limit is $\frac{1}{18}$.

In the following example, you will simply substitute in the value of x and evaluate the limit.

$$
\lim _{x \rightarrow 9} \sqrt{4 x-3}=\sqrt{4(9)-3}=\sqrt{36-3}=\sqrt{33}
$$

As " x approaches 9 ," the limit is $\sqrt{33}$.

