Tests for Symmetry

There are three types of symmetry: symmetric with respect to the y-axis, symmetric with respect to the x-axis, and symmetric with respect to the origin.

1. If (x, y) is a point on the graph and $(-x, y)$ is also a point on the graph, the portion of the graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.
2. If (x, y) is a point on the graph and $(x,-y)$ is also a point on the graph, the portion of the graph above the x-axis is a mirror image of the portion below the x-axis.
3. If (x, y) is a point on the graph and $(-x,-y)$ is also a point on the graph, the graph is unchanged by a rotation of 180° about the origin.

Find the axis of symmetry for the following problems:

$$
y=x^{2}-6 \quad y^{2}=x^{3}-8 x \quad x y=4
$$

$(-\mathbf{x}, \mathbf{y})$ Symmetric about the $\mathbf{y}-$ axis	$(\mathbf{x},-\mathbf{y})$ Symmetric about the $\mathbf{x}-$ axis	$(-\mathbf{x},-\mathbf{y})$ Symmetric about the origin
$y=x^{2}-6$	$y=x^{2}-6$	
$y=(-x)^{2}-6$	$-y=x^{2}-6$	
$y=x^{2}-6$	$-y=x^{2}-6$	$y=x^{2}-6$
$y^{2}=x^{3}-8 x$	$y^{2}=x^{3}-8 x$	$-y=(-x)^{2}-6$
$y^{2}=(-x)^{3}-8(-x)$	$(-y)^{2}=x^{3}-8 x$	$-y=x^{2}-6$
$y^{2}=-x^{3}+8 x$	$y^{2}=x^{3}-8 x$	$y^{2}=x^{3}-8 x$
		$(-y)^{2}=(-x)^{3}-8(-x)$
$x y=4$	$x y=4$	$y^{2}=-x^{3}+8 x$
$(-x) y=4$	$x-y=4$	$x y=4$
$-x y=4$	$-x y=4$	$(-x)(-y)=4$
		$x y=4$

After substituting in the negatives and solving, the final equation should equal the beginning equation. This provides you with the axis of symmetry.

