Tests for Symmetry

There are three types of symmetry: symmetric with respect to the y-axis, symmetric with respect to the x-axis, and symmetric with respect to the origin.

- 1. If (x, y) is a point on the graph and (-x, y) is also a point on the graph, the portion of the graph to the left of the y-axis is a *mirror image* of the portion to the right of the y-axis.
- 2. If (x, y) is a point on the graph and (x, -y) is also a point on the graph, the portion of the graph above the x-axis is a *mirror image* of the portion below the x-axis.
- 3. If (x, y) is a point on the graph and (-x, -y) is also a point on the graph, the graph is *unchanged* by a rotation of 180° about the origin.

$y = x^2 - 6$	$y^2 = x^3 - 8x$	xy = 4
(-x, y) Symmetric about the y- axis	(x, -y) Symmetric about the x- axis	(-x, -y) Symmetric about the origin
$y = x^2 - 6$	$y = x^2 - 6$	$y = x^2 - 6$
$y = (-x)^2 - 6$	$-y = x^2 - 6$	$-y = (-x)^2 - 6$
$y = x^2 - 6$	$-y = x^2 - 6$	$-y = x^2 - 6$
$y^2 = x^3 - 8x$	$y^2 = x^3 - 8x$	$y^2 = x^3 - 8x$
$y^2 = (-x)^3 - 8(-x)$	$\left(-y\right)^2 = x^3 - 8x$	$(-y)^2 = (-x)^3 - 8(-x)$
$y^2 = -x^3 + 8x$	$y^2 = x^3 - 8x$	$y^2 = -x^3 + 8x$
xy = 4	xy = 4	xy = 4
(-x)y = 4	x - y = 4	(-x)(-y) = 4
-xy = 4	-xy = 4	xy = 4

Find the axis of symmetry for the following problems:

After substituting in the negatives and solving, the final equation should equal the beginning equation. This provides you with the axis of symmetry.